

<u>PROPOSITION DE CORRIGE ET BARÊME</u>

1. Etude du circuit de surveillance de la tension aux bornes de l'inducteur (8 points).

1.1. Elaboration des tensions U_{SL} et U_{SH} (2 points).

données: $R_1 = 12 \text{ k}\Omega$, $R_2 = R_4 = 2 \text{ k}\Omega$ et $V_{cc} = 15 \text{ V}$

données:
$$R_1 = 12 \text{ k}\Omega$$
, $R_2 = R_4 = 2 \text{ k}\Omega$ et $V_{cc} = 15 \text{ V}$
1.1.1. $U_{SL} = \frac{R_2 V_{cc}}{R_1 + R_2} = \frac{2.15}{14} = 2,15 \text{ V}$ (0,5 point pour expression + 0,5 point pour le calcul)

1.1.2.
$$U_{SH} = \frac{R_4 \cdot V_{cc}}{R_3 + R_4}$$
 d'où $R_3 = 1 \text{ k}\Omega$ (0,5 point pour expression + 0,5 point pour le calcul)

1.2. Commande signalisation défauts et arrêt chauffe (6 points).

- 1.2.1. ADI1 et ADI2 fonctionnent en mode non linéaire (ou en montage comparateur), car pas de (0.5 point + 0.5 point pour justification)rétroaction.
- 1.2.2. $u_{dL} = U_{SL} u_{c}$. (0,5 point)
- 1.2.3. $u_{dH} = -U_{SH} + u_c$. (0,5 point)
- 1.2.4. Voir tableau 1. (0,5 point)
- 1.2.5. Transistors bipolaires de type NPN. (0,5 point)
- 1.2.6. « Diode de roue libre » ou « diode de récupération » : elle permet la libre circulation du courant de la bobine du relais K lorsque T₃ se bloque. (0,5 point)
- 1.2.7. Voir tableau 2. (2,5 points)

2. Etude du pont redresseur du convertisseur de fréquence (6 points).

- **2.1.** T = 10 ms; f = 100 Hz. (0,5 point + 0,5 point)
- **2.2.** $\alpha = 45^{\circ}$ (ou $\pi/4$). (0,5 point)
- **2.3.** $\alpha = 0$. (0,5 point)
- 2.4. Voir schémas n°1 et n° 2 du document réponse N°1. (0,5 point + 0,5 point)
- 2.5. Voir document réponse N°2. (1 point)
- **2.6.** < $i_a > = 0$ car i_L vaut I sur une demi période et I sur l'autre demi période.

$$I_{eff}^2 = \langle i_a^2 \rangle = \langle I^2 \rangle = I^2$$
 donc $I_{eff} = I$. (1 point + 1 point)

Remarque : les valeurs moyenne et efficace de i_L peuvent être obtenues par le calcul intégral.

3. Etude du moteur asynchrone en charge (6 points).

Le moteur asynchrone est alimenté par un réseau 230 V / 400 V, 50 Hz.

3.1. Etude du moteur au point de fonctionnement nominal (4 points).

la plaque signalétique du moteur asynchrone porte les indications suivantes :

1.1 kW

230 V / 400 V

50 Hz

2,8 A / 4,8 A

 $\cos \varphi = 0.78$

 $n = 935 \text{ tr.min}^{-1}$

3.1.1. Couplage étoile car $V_{enroulement} = V_{réseau} = 230 \text{ V}$. (0,5 point)

3.1.2. $n_s = 1000 \text{ tr.min}^{-1}$. (0,5 point)

3.1.3. $I_Y = 2.8 \text{ A}$. (0.5 point)

3.1.4. $P_A = \sqrt{3}.U.I.\cos\varphi = 1513 \text{ W}$ (0,5 point) et $\eta = \frac{P_u}{P_A} = \frac{1100}{1513} = 72 \%$ (0,5 point)

3.1.5. $T_U = \frac{P_U}{\Omega} = \frac{P_U.30}{n.\pi} = 11.2 \text{ N.m.}$ (0.5 point)

3.1.6. Voir document réponse N°3. (1 point)

3.2. Etude de l'ensemble moteur / convoyeur (2 points).

Le convoyeur impose un couple résistant de moment constant $T_r = 9$ N.m.

3.2.1. Voir document réponse N°3. (1 point)

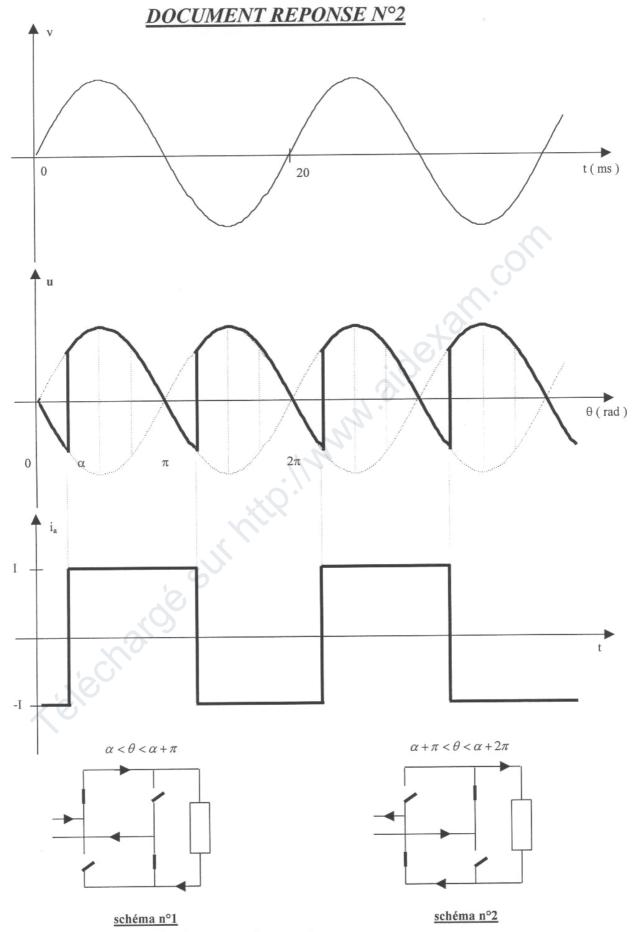
3.2.2. En régime permanent, $T_M = T_r$, les coordonnées du point de fonctionnement de l'ensemble moteur / convoyeur sont donc celles du point d'intersection des 2 caractéristiques mécaniques : $T = 9 \text{ N.m et n} = 950 \text{ tr.min}^{-1}$. (0,5 point)

3.2.3. $g = (n_s - n) / n_s = (1000 - 950) / 1000 = 5 \%$. (0,5 point)

DOCUMENT REPONSE N°1

sortie porte NON OU	1	0	0	0	
entrée V _L entrée V _H	0	1	0	1	tableau 1
entrée V _L	0	0	1	1	

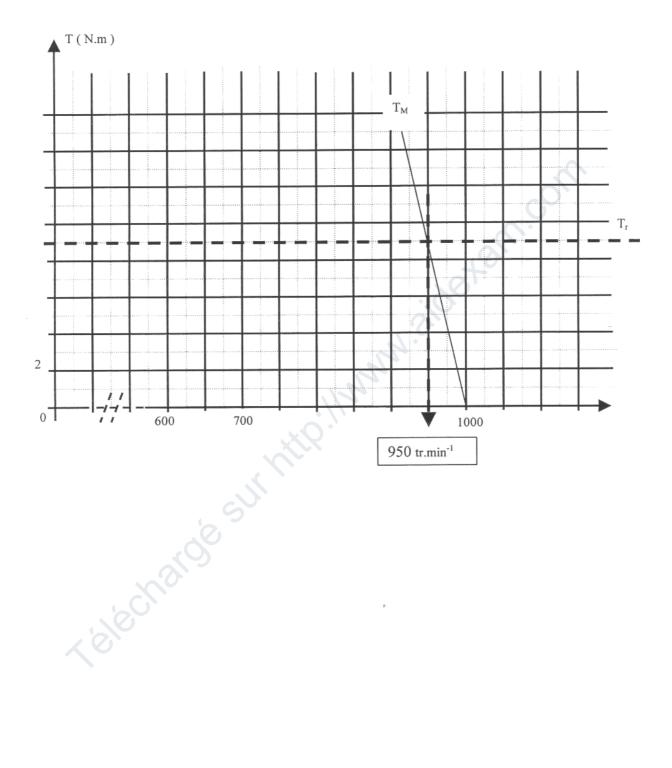
tableau 1


Remarque : à chaque fois qu'un "état" est demandé, les réponses seront "0" ou "1" :

- le "0" sera utilisé pour un état bloqué, pour un élément non passant ou pour un niveau bas;
 le "1" sera utilisé pour un état passant, un élément saturé ou pour un niveau haut).

état chauffe (arrêt ou validation)	arrêt	validation	arrêt
état de D ₃	0	1	0
état de T ₃	0	1	0
niveau logique sortie porte NON OU	0	1	0
état de D4	0	0 7	200
état de D1	70	0	0
état de T2	0	0	1
état de T1	-	0	0
$\begin{array}{c} \text{valeur de V}_L & \text{valeur de V}_H \\ \text{(en V)} & \text{(en V)} \end{array}$	- 15	- 15	+15
valeur de V _L	+15	- 15	- 15
signe u _{dH}	ı	ı	+
signe u _{dL}	+	I	I
	$u_{\rm C} < U_{\rm SL} < U_{\rm SH}$	U _{SL} < u _C < U _{SH}	$u_C > U_{SH} > U_{SL}$

tableau 2



Page 4 / 4

DOCUMENT REPONSE N°3

